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NEURAL NETWORKS: ALTERNATIVES TO CONVENTIONAL TECHNIQUES FOR
AUTOMATIC DOCKING

by

Bradley L. Vinz
Computer Science Department
University of Alabama in Huntsville
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ABSTRACT

AtToMmaTIC docking of orbiting spacecraft is a cru-
cial operation that involves identification of vehicle orien-
tation as well as complex approach dvnamics. Success de-
pends on the chaser spacecraft's ability to recognize the
target spacecraft within a scene and achieve accurate
closing maneuvers. In a video-based vision system. a tar-
get scene must be captured and transformed into a pattern
of pixels. Successful recognition lies within the procedure
that interprets this pattern. Due to their powerful pattern
recognition capabilities, artificial neural ..2tworks offer a
potential role in the nterpretation process. and hence. in
automnatic docking. Neural networks possess many attrac-
tine features. Theyv have an inherent ability to reduce the
amount of computation time required by existing image
processing and control software. In addition. it has been
shown that neural nets are capable of recognizing and
adapting to changes in their dynamic environment. ena-
bling enhanced performance, redundancy and fault toler-
ance Most neural networks are also robust to failure. that
is. they are capable of continued operation with a slight
degradation in performance after minor failures This pa-
per will discuss the particular automatic docking tasks
which neural networks are capable of performing The
goal is to establish neural networks as viable alternatives
to conventional techmques.

INTRODUCTION

AtTtoMarTic docking of spacecraft is a challenging
problem that demands the maturation of developing tech-
nologies. Upon recognition of a target during rendezvous.
the chaser vehicle must perform a sequence of proximity
mareuvers to accomplish the mechanical latching with
the target spacecraft (Figure 1). The processing systems
onboard the chaser must reliably identify, extract, and
process target information within a possibly obstructed
image scene. This processing must be repeatedly provided
during vehicle closing maneuvers (Figure 2). Target atti-
tude and position data must be determined by the vision

system so that the control system may initiate appropaate
maneuvering commands for the propulsion system.

Automatic recognition of a target can be cumber-
some. especially when the images contain scesics with
structured background clutter. foreground visual obstruc-
uon. and varying intensity levels within the digitized im-
ages themselves [1]. The task is additionally complicated
for automatic docking [2], due to the dvnamic environ-
ment which the spacecraft may encounter (e.g.. sun shad-
ows, tumbling target. obstructed view of docking mecha-
nism, and possible confusion caused by background ob-
Jects).

In overcoming these difficulties, the realization of a
fully automated system offers many attractive potential
payoffs. These rewards include lowered mission costs. re-
duced nisk factors for unmanned missions. increased atu-
tude capability for satellite servicing, space debris capture.
reboosting of spacecraft in decaving orbits. and orbstal re-
supply [3].

In the next section. some conventional techniques
being considered for incorporation in automatic docking
systems will be examined. These include systems using
radar. laser-based sensors, and video-based sensors The
concluding section will examine how neural networks
may offer viable solutions t the problems encountered
with the proposed conventional techniques.

CONVENTIONAL TECHNIQUES

A spacecraft's success in performing docking ma-
neuvers is dependent on the accuracy of its sensors. Accu-
rate range and range-rate information is required to main-
tain proper closure and avoid collision with the target
spacecraft [4].

Radar can > ovide this information to some degree.
The Soviet space program had performed automated ren-
dezvous and docking since 1967, using radar-based sys-
tems. Ir. such systems, the relative positions of two space-
craft are determined by the variation ia signal strengths
between antennas [5].
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Chaser
Vehicle

Figure 1. Chaser and Target Vehicles during rendezvous.

It has been incorrectly perceived that the Soviets
used automatic control for all docking missions [6]. De-
spite regular success of automatic dockings of unmanned
resupply ships with the Mir and Salyut space stations,
automatic dockings of manned vehicles with the stations
have been rare, if at all. The automated system has been
routinely overridden in favor of manual docking. Reasons
cited for failures were c.mputer overloads, loss of radar
signals, and antennae malfunctions [5]. Also, it should be
noted that as the two spacecraft approach close proximity,
radar range accuracy is influenced by multi-path problems
and saturation of radar frequency signals. It follows that a
more precise sensing technique is needed for reliable
automatic docking.

An Automated Rendezvous and Capture (ARC) task
team has been formed at NASA's Marshall Space Flight
Center (MSFC) to develop a ground-based simulation for
rendezvous and docking two unmanned spacecraft [7).
The docking maneuvers are planned to be controlled by a
laser/videc-based system that detects three retroreflective
sensors embedded on a modified Remote Manipulator
(RMS) target located on the target spacecraft by using la-
sers operated at two different wavelengths. Image scenes
obtained using faser diode illumination will contain spots
corresponding to desired reflection from the retroreflectors
angd other reflections [8]. Signal-to-noise enhancement is
achieved by subtracting the non-iiluminated scene from

the target scene illuminated by the laser diodes. Onboard
processing of the relative position of the three retroreflec-
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Figure 2. Image Pipeline Process of Chaser Spacecraft.
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tors (within the video 1mages) will provide range and
translation displacement as well as relative atuitude errors.

This techmique has reasonable chance of success for
a space-based mission given the restrictions in which it
must operate. One restriction is that the method is de-
signed to detect attitude stabilized targets (i.e., no tum-
bling, spinning. coning) and mey fail if the target sud-
denly starts exhibiting dvnamic behavior [7). Another re-
striction is that the chaser spacecraft must always ap-
proach the target spacecraft so that the retroreflective ser-
sors are consistently in the field of view (with no obstruc-
tive objects) and that the sensors are properly oriented in
an upright position [4]. Also, although sun lighting of the
target vehicle during docking maneuvers may be desir-
able. direct or reflected sunlight may interfere with the
optical sensers [9]. Additionally, it should be pointed out
that initial detectior and identification of the three ret-
roreflective sensurs are non-trivial in a severe noise envi-
ronment. In other words, the signal-to-noise enhancement
may not be able to eliminate every false spot. causing
misidentification of the three sensor dots [8]. It follows
that the lack or loss of laser signal feedback from the tar-
get spacecraft would cause an abort from the attempted
rendezvous [9). Given these reasons, one may deduce that
the ARC method lacks the ability to adapt to an unstable
target and to environmental changes. A more adaptable
method may be needed for a general case solution to the
possible complexities of automatic docking.

Image-based (video) systems using such methods as
Fast Fourier Transforms (FFTSs) or syntactic pattern rec-
ognition, offer many advantages such as relative hardware
simplicity and reprogrammability [10). These advantages
must be weighed against the disadvantages of these sys-
tems. such as limited operational range. response time
limitations. poorer accuracy at greater distances. and sen-
sitivity to lighting conditions. However, with properly de-
signed algorithms and targets, these disadvantages can be
minimized for many important vision applications [10].

The 1ntent of this paper is not to enumerate all of the
conventional techniques but to provide adequate informa-
tion for comparison to neural network methods. Table 1
lists some of the many technologies embedded in con-
ventional techniques. The next section will discuss how
neural network techniques can be ¢mbedded in a vision
system for video-based automatic docking. The objective
is to develop a scheme which overcomes the previously
statec limitations associated with conventional techniques.
The scheme will focus on using self-adapting neural net-
works. since they offer promise for successful recognition
in the dvnamic environmen! in which the chaser space-
craft must operate.
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Radar
Laser-based sensors
Video-based sensors
Global Positioning System (GPS)
Fast Fourier Transforms (FFTs)
Portable/programmable optical hardware
Optical Correlators

Table 1. Some Technologies of Conventional Techmques

NEURAL NETWORK TECHNIQUES

THE primary function of a vision system for auto-
matic docking is to determine the three-dimensional rela-
tive position and attitude of a target vehicle from a two-
dimensional image representation [11]. Successful recog-
nition relies on the system's ability to correctly intcrpret
the image scene. Problems that plagus systems containing
conventional vision techniques are caused by the enor-
mous computational power required to process images
[12). It shouid be noted that many of the required compu-
tations for target recognition can be achieved simultane-
ously (i.e.. in parallel). Furthermore. parallelism becomes
essential in obtaining the real-time throughput required
for automatic docking.

Due to their powerful pattern recognition capabilities
and their massively parallel nature. neural networks are
viable candidates for vision applications, and hence for
automatic docking. Biologically inspired, a neural net-
work 1s a sy.rem of highly interconnected processing units
(called neurons) that can modifv their dynamic behavior
in response to their environment [13]. Neural networks
have many advaintages (Table 2). They are capable of
making decisions at high-speed wkile maintaining fault
tolerance, that 1s. they are capable of continued operation
after moderate failures of individual components. Possess-
ing this robust feature, they produce reliable results in the
presence of noise or contradictory information. [14]. They
also learn from experience and are capable of generaliz-
ing. Generalization allows a network to respond to (partial
or incomplete) input tha: it has never seen before. Robust-
ness and generalization provide a neural network the ca-
pability to self-adapt to changes in a dynamic environ-
ment. Given these attractive characteristics, one can con-
clude that neural networks make plausible candidates for
performing automated vision tasks. For a more intense de-
scription of neural networks and specific architectures see
[12], [13], [15], and [16).

Vae
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massively parallel
adaptable to change
fault tolerant
distnbuted memory
good pattern recognizers
self-organizing
able to generalize

Table 2. Some Characteristics of Neural Networks.

It is the responsibility of the vision system to provide
reliable position and aititude information to the control
system (Figure 3). A proposcd vision system for the chaser
spacecraft, based on neural net techmiques, consists of five
major components: 1) image acquisition and digitization,
2) image compression, 3) edge detection, 4) image nor-
malization, and 35) target attitude determination. Note that
each component performs a specific task, given its se-

Target
Scene
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quential position within the image processing pipeline
(Figure 3). The following example illustrates the opera-
tions performed by these components. The image acquisi-
tion and digitization component, consisting of a video
camera and frame grabber, 1s subjected to a target scene.
An analog signal of the target is captured and digitized
into a 256 x256 pixel image. Image compression reduces
the image to a 32 x32 pixel image. A contour of the target
is then extracted using edge detection. The contoured im-
age is centered and then scaled by an image normalization
procedure. In the process of doing so, the translational
displacement is calculated and supplied to the control sys-
tem. The docking target attitude determination component
calculates the rotational displaccment of target from the
normalized contoured image. The rotational displacement
is then output to the control system.

The individual components of the vision system will
now be examined for possible replacement by neural net-
works (Table 3). The function of the image compression
component is to reduce the 256 x256 image provided by
the frame grabber down to a 32x32 pixel image. Reduc-
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Figu . Automatic Docking Tasks.
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g the image size may be necessary to obtain the required
real-time throughput. Conventional algorithms, such as
pixel averaging techniques, exist that can perform the re-
quired compression [14]. However, if the compression
cannot be performed within the maximum time allowed
(to achieve real-time throughput). another approach is
warranted. By taking advantage of the parallel power of
neural nets, computational speceds can be maximized.
Additionally, compressing the 256 x 256 image may be to-
tallv unnecessary, if the vision system meets the required
throughput. Assuming image compression is essential, the
counterpropagation network is a possible candidate for the
task. Counterpropagation combines the Kohonen self-or-
ganizing feature map network with the Grossberg outstar,
creating a three-layer paradigm possessing functionaliiy
not available in either alone |15). This type of network is
asually trained to perform pattern mapping [16]. For ex-
ample, a pattern (image) of pixels can be mapped inty an-
other pattern of pixels of reduced size Suppose that each
image is divided into subimage regions {13]. Each subim-
age is then divided into pixels, which can be grouped into
a vector. For a 256 x256 pixel image, let each subimage
be an 8 x 8 pixel region. This results in 32x32 regions to-
tal. Each region represents a vector input into the coun-
terpropagation net. The net is then trained to output a
predetermined average or thresholded pixel value repre-
senting the transformed region. Note each 8x8 pixel re-
gion of the 256 x256 pixel image is mapped to 1 pixel
within the 32 x32 pixel image, resulting in a compression
ratio of 8:1.

Component Neural Network
image compression counterpropagation
edge detection lateral inhibition
image normalization Kohenen

target actitude determination  counterpropagation

Table 3. V'ision system components and their possible
neural net implementations.

The next siep in the vision system processing pipe-
line is to perform edge detection on the compressed im-
age. The approach is to identify contour boundaries within
the image having distinct intensity values. A neural net
well suited for this task is the lateral inhibition network
[16]. The network is based on the lateral inhibition that
occurs naturally in the auditory and visual biological sys-
tems. The edge-enhance properties of this network allow
it to process noisy data in order to emphasize edge
contrast. Within borderline edge areas of the input i.nage,
adjacent pixels having different intensity values will be
enhanced in the outwut image. That is, light pixels will
become lighter and dark pixels will become darker. The
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image can be further thresholded to produce a 32x32 bi-
nary image consisting of a well-defined contour of the tar-
get.

The image normalization component centers the tar-
get within the scene and then scales it to some predeter-
mived focal point. During this procedure, the translational
displacement of the target can be computed and provided
1o th. control system. The Kohonen self-organizing fea-
ture map is a good candidate for performing both the cen-
tering aad scaling. This network specizlizes in character-
izing the distribution of its input — in this case, the con-
tour of t+-  rget. The contour center is calculated and the
contow .. centered within the image. A stored reference
contour, representing the target at a designated orientation
and distance, is then matched against the centered con-
tour. The amount the centered contour must excand or
shrink determines the scale factor fos scaling the ou‘zut
image.

Determining the target attitude is a complicated task.
The function of the target attitude determination compo-
nent is to take the normalized image and produce the ro-
1ational displacement for input into the control system. If
ample training data is available, a counterpropagation
network can be configured to reliably perform this task.
Presented a training set of contoured images obtained
from a systematic set of designated reference images. the
network can learn to associate each training image with
the correct attitude of the target vehicle [17}. During op-
cration, the trained network can deicrmine the target atti-
tude by interpolating between its best-matching stored im-
ages. Another advantage of using counterpropagation to
perform the task is its ability to generalize on partially in-
complete or par.ally incorrect input [13]. This enables
successful recognition of a target within a degraced scene
— such as the event that occurs when the target is sud-
denly casted with sun shadows.

Simulation of this propose.* .
ther measure the plausibility
niques before a space-bed mr 7. empted Table 3
comnar < a neural ne-based sy . whos .. > using
the vu: «entional laser/video (AR, 1.t w

svetem can fur-
eural net tech-

CONCLUSIONS

THE objective of this paper has been io: 1) acknowl-
edge the dificulties in implementing a visic a system for
automaiic spacecraft docking, 2) examine conventional
vision techniques for weaknesses that could affect mission
success, 3) emphasize the strengths of neural networks
that overcoine these weaknesses, and 4) establish neural
networks as plausible alternatives to conventional tech-
niques being con.idcreq for actual deployment.

In conclusion, conventional vision techniques such
as the laser/video based method should perform ade-
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quately within the restrictions imposed on them. The con-
ventional methods need design enhancements for adapting
in a dvnam:: emvironment. However, neural networks are
capable of adaptation Due to their powerful pattern rec-
ognition and fault tolerance skills. neural nets provide a
potential a'ternative for the design of an automatic dock:-
1ng system.

Laser/Video Based (ARC)

«Target n.ust be attitude stabilized

«Target orientation assumed upright

«Performance unaffected by sunshadows and/or
background

«Loss of laser sigral feedback requires mission
abort

Neural Net Based

«Stabilization not required since any orientation
can be recognized

+No specific orientation assumed

«Must learn to adapt to environment changss

Table 4. 4 comparison of the ARC method with
a neural net-based method.
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